Relaxed Krylov subspace approximation

نویسندگان

  • Valeria Simoncini
  • Daniel B. Szyld
چکیده

Recent computational and theoretical studies have shown that the matrix-vector product occurring at each step of a Krylov subspace method can be relaxed as the iterations proceed, i.e., it can be computed in a less exact manner, without degradation of the overall performance. In the present paper a general operator treatment of this phenomenon is provided and a new result further explaining its behavior is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Dynamically Relaxed Block Incomplete Factorizations for Solving Two- and Three-Dimensional Problems

Abstract. To efficiently solve second-order discrete elliptic PDEs by Krylov subspace-like methods, one needs to use some robust preconditioning techniques. Relaxed incomplete factorizations (RILU) are powerful candidates. Unfortunately, their efficiency critically depends on the choice of the relaxation parameter ω whose “optimal” value is not only hard to estimate but also strongly varies fro...

متن کامل

The Extended Krylov Subspace Method and Orthogonal Laurent Polynomials

Abstract. The need to evaluate expressions of the form f(A)v, where A is a large sparse or structured symmetric matrix, v is a vector, and f is a nonlinear function, arises in many applications. The extended Krylov subspace method can be an attractive scheme for computing approximations of such expressions. This method projects the approximation problem onto an extended Krylov subspace K(A) = s...

متن کامل

Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles

We consider the approximation of the matrix φ-functions that appear in exponential integrators for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices with a field-of-values in the left complex half-plane, we consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005